Extensions 1→N→G→Q→1 with N=C22 and Q=S3xD9

Direct product G=NxQ with N=C22 and Q=S3xD9
dρLabelID
C22xS3xD972C2^2xS3xD9432,544

Semidirect products G=N:Q with N=C22 and Q=S3xD9
extensionφ:Q→Aut NdρLabelID
C22:1(S3xD9) = D9xS4φ: S3xD9/D9S3 ⊆ Aut C22366+C2^2:1(S3xD9)432,521
C22:2(S3xD9) = S3xC3.S4φ: S3xD9/C3xS3S3 ⊆ Aut C223612+C2^2:2(S3xD9)432,522
C22:3(S3xD9) = D9xC3:D4φ: S3xD9/C3xD9C2 ⊆ Aut C22724C2^2:3(S3xD9)432,314
C22:4(S3xD9) = S3xC9:D4φ: S3xD9/S3xC9C2 ⊆ Aut C22724C2^2:4(S3xD9)432,313
C22:5(S3xD9) = D18:D6φ: S3xD9/C9:S3C2 ⊆ Aut C22364+C2^2:5(S3xD9)432,315

Non-split extensions G=N.Q with N=C22 and Q=S3xD9
extensionφ:Q→Aut NdρLabelID
C22.1(S3xD9) = Dic3.D18φ: S3xD9/C3xD9C2 ⊆ Aut C22724C2^2.1(S3xD9)432,309
C22.2(S3xD9) = D18.3D6φ: S3xD9/S3xC9C2 ⊆ Aut C22724C2^2.2(S3xD9)432,305
C22.3(S3xD9) = D18.4D6φ: S3xD9/C9:S3C2 ⊆ Aut C22724-C2^2.3(S3xD9)432,310
C22.4(S3xD9) = Dic3xDic9central extension (φ=1)144C2^2.4(S3xD9)432,87
C22.5(S3xD9) = Dic9:Dic3central extension (φ=1)144C2^2.5(S3xD9)432,88
C22.6(S3xD9) = C18.Dic6central extension (φ=1)144C2^2.6(S3xD9)432,89
C22.7(S3xD9) = Dic3:Dic9central extension (φ=1)144C2^2.7(S3xD9)432,90
C22.8(S3xD9) = D18:Dic3central extension (φ=1)144C2^2.8(S3xD9)432,91
C22.9(S3xD9) = C6.18D36central extension (φ=1)72C2^2.9(S3xD9)432,92
C22.10(S3xD9) = D6:Dic9central extension (φ=1)144C2^2.10(S3xD9)432,93
C22.11(S3xD9) = C2xC9:Dic6central extension (φ=1)144C2^2.11(S3xD9)432,303
C22.12(S3xD9) = C2xDic3xD9central extension (φ=1)144C2^2.12(S3xD9)432,304
C22.13(S3xD9) = C2xC18.D6central extension (φ=1)72C2^2.13(S3xD9)432,306
C22.14(S3xD9) = C2xC3:D36central extension (φ=1)72C2^2.14(S3xD9)432,307
C22.15(S3xD9) = C2xS3xDic9central extension (φ=1)144C2^2.15(S3xD9)432,308
C22.16(S3xD9) = C2xD6:D9central extension (φ=1)144C2^2.16(S3xD9)432,311
C22.17(S3xD9) = C2xC9:D12central extension (φ=1)72C2^2.17(S3xD9)432,312

׿
x
:
Z
F
o
wr
Q
<